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The stability of the variable-density
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We perform a three-dimensional stability analysis of the Kelvin–Helmholtz (KH)
billow, developing in a shear layer between two fluids with different density. We begin
with two-dimensional simulations of the temporally evolving mixing layer, yielding
the unsteady base flow fields. The Reynolds number is 1500 while the Schmidt and
Froude numbers are infinite. Then exponentially unstable modes are extracted from
a linear stability analysis performed at the saturation of the primary mode kinetic
energy. The spectrum of the least stable modes exhibits two main classes. The first class
comprises three-dimensional core-centred and braid-centred modes already present in
the homogeneous case. The baroclinic vorticity concentration in the braid lying on
the light side of the KH billow turns the flow into a sharp vorticity ridge holding
high shear levels. The hyperbolic modes benefit from the enhanced level of shear in
the braid whereas elliptic modes remain quite insensitive to the modifications of the
base flow. In the second class, we found typical two-dimensional modes resulting from
a shear instability of the curved vorticity-enhanced braid. For a density contrast of
0.5, the wavelength of the two-dimensional instability is about ten times shorter than
that of the primary wave. Its amplification rate competes well against those of the
hyperbolic three-dimensional modes. The vorticity-enhanced braid thus becomes the
preferred location for the development of secondary instabilities. This stands as
the key feature of the transition of the variable-density mixing layer. We carry out
a fully resolved numerical continuation of the nonlinear development of the two-
dimensional braid-mode. Secondary roll-ups due to a small-scale Kelvin–Helmholtz
mechanism are promoted by the underlying strain field and develop rapidly in the
compression part of the braid. Originally analysed by Reinoud et al. (Phys. Fluids,
vol. 12, 2000, p. 2489) from two-dimensional non-viscous numerical simulations, this
instability is shown to substantially increase the mixing.

1. Introduction
The interest in turbulent mixing layers stems from their recurrence in geophysical

and industrial flows. They often develop with mass variations resulting from thermal
mixing, compressibility effects or the mingling of fluids of different densities. This
motivated the early experimental work of Brown & Roshko (1974) who investigated
the density effect on the shear-layer development. Mass inhomogeneities introduce
inertia differentials responsible for the modification of the flow. More precisely, the
baroclinic torque alters the vorticity dynamics where the density gradient and the
pressure gradient are misaligned. In the inviscid limit, the baroclinic torque is simply
proportional to the vector product between the density gradient and the acceleration
field. In stratified geophysical flows, gravity introduces a fixed external acceleration
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and gives rise to a well-known vorticity source. This gravitational baroclinic vorticity
production has been shown to alter significantly the stability characteristics of a
stratified shear layer under the Boussinesq approximation. In high-Froude-number
flows, the acceleration comes only from the variation of the fluid velocity along the
particle path. We label the corresponding vorticity source the inertial baroclinic torque.
We focus here on its consequences on the stability characteristics of the variable-
density mixing layer in the limit of infinite Froude number and zero Mach number.

In homogeneous mixing layers, previous works contributed to the well-accepted
standard route to three-dimensionality. It relies on both streamwise vortices lying in
the braid region between two consecutive Kelvin–Helmholtz (KH) billows and core
undulation of the primary rollers (see Jimenez 1983; Corcos & Lin 1984; Bernal &
Roshko 1986, Lasheras, Cho & Maxworthy 1986; Ashurst & Meiburg 1988; Lasheras
& Choi 1988; Nygaard & Glezer 1990). Core-centred or elliptic modes – referred to
as the ‘translative’ instability of Pierrehumbert & Widnall (1982) – as well as braid-
centred or hyperbolic modes contribute to the development of these three-dimensional
motions (Metcalfe et al. 1987; Klaassen & Peltier 1991; Rogers & Moser 1992). Both
kinds of instabilities essentially derive their energy from shear conversion as shown
by Klaassen & Peltier (1991 – hereinafter referred to as KP91).

In the stratified mixing layer, the selection of three-dimensional secondary modes
is modified. The stability analysis of Klaassen & Peltier (1985) pointed out that
convective instabilities related to the Rayleigh–Taylor mechanism appear in the
superadiabatic regions where stratification is locally reversed during the rolling of the
KH wave. For a large enough Richardson number, KP91 demonstrated that these
modes essentially derive their growth from potential energy conversion. These authors
also predicted that convective modes dominate the three-dimensional transition
stage of the flow since they possess the maximum linear growth rate. Schowalter,
Van Atta & Lasheras (1994) confirmed this point experimentally by visualizing
streamwise baroclinically generated vortices at the unstable density interface. These
buoyancy-induced longitudinal structures are enhanced by the initial development of
the streamwise ribs also occurring in the homogeneous case. Even for Richardson
numbers as small as 0.03, they dominate the three-dimensional structure as the flow
evolves downstream. Most of these results were retrieved by Cortesi, Yadigaroglu
& Banerjee (1998) with direct numerical simulations. Besides these three-dimensional
modes, a two-dimensional Kelvin–Helmholtz instability can emerge at the braid saddle
point, as first observed by Staquet (1995). This secondary mode was not detected
in KP91 stability analysis because of the small value of their Reynolds number. As
demonstrated by Smyth (2003), the onset of this Kelvin–Helmholtz mode is promoted
by high Reynolds numbers and, to a lesser extent, by high Prandtl numbers.

By contrast, the high-Froude-number variable-density mixing layer where the
inertial baroclinic torque is active, has been much less well documented. However, it
is an example of high-Reynolds-number mixing between gases of different densities
with applications in combustion. As its homogeneous counterpart, the variable-
density shear layer is sensitive to the Kelvin–Helmholtz instability. The roll-up of
the vorticity sheet exhibits specific features due to baroclinic vorticity redistribution.
We term the resulting large-scale structures the variable-density Kelvin–Helmholtz
(VDKH) billows. Soteriou & Ghoniem (1995) illustrated the symmetry breaking of
the streamline pattern and detailed the density-induced biases on the entrainment
and the convection velocity. They considered the baroclinic vorticity production as a
superimposed counter-rotative dipole centred on the braid saddle point. This simple
model yields the essential modifications due to the density contrast. As demonstrated
by Reinaud, Joly & Chassaing (2000), baroclinic vorticity generation on the light side
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of the VDKH billow triggers a two-dimensional secondary instability providing a
two-dimensional route to turbulence. This shear instability of the vorticity enhanced
braid results from the strain–vorticity competition addressed theoretically by Dritschel
et al. (1991) in the homogeneous case.

Few studies so far have dealt with the three-dimensional evolution of the
inhomogeneous shear layer. Using a three-dimensional inviscid vortex method, Knio
& Ghoniem (1992) gave a first description of this transition stage for a density ratio
of 2. They observed the symmetry breaking of the flow induced by the baroclinic
torque which unevenly affects the development of the streamwise ribs. The vorticity of
the longitudinal vortices lying on the low-density (resp. high-density) side is intensified
(resp. weakened). Joly, Reinaud & Chassaing (2001) performed viscous simulations
at a density ratio of 3 in which the baroclinic torque contributed significantly to the
dynamics of the streamwise vortices. Both studies suffered from a lack of a priori
knowledge of the most amplified three-dimensional mode to seed their nonlinear
simulations. As mentioned by the previous authors, the three-dimensional linear
stability analysis of such a flow has not been treated so far. In this paper, we
determine how secondary modes are modified under the influence of the inertial
baroclinic torque.

In order to carry out this linear stability analysis, two major difficulties have to be
considered. First, there is no analytical solution for the velocity and density fields of
the VDKH nonlinear wave. Secondly, the temporal stability study requires a steady
basic state. Klaassen & Peltier (1985, 1989, 1991) overcame these two obstacles when
considering the three-dimensional secondary instabilities of the stratified mixing layer.
They chose first to obtain the two-dimensional base flow fields from a numerical
simulation of the temporally evolving shear layer. They then based the stability
analysis on a quasi-steady approach, assuming that three-dimensional disturbances
grow on a time scale shorter than the two-dimensional primary rollers. They performed
the stability calculations throughout the development of the KH wave and validate a
posteriori the unstable modes in agreement with the quasi-static assumption. Unstable
modes, persistent on a long-enough time period, are considered likely to grow in the
stratified mixing layer. We adopt the same methodology in the present case.

The paper is organized as follows. The numerical simulation leading to the
generation of the nonlinear VDKH wave is briefly presented in § 2. We also describe
the characteristics of the base flow relevant to the development of three-dimensional
modes. We derive the equations for the three-dimensional linear stability analysis
in § 3. The numerical method to solve the eigen-problem is detailed and validated
in the same section. The results of the three-dimensional stability analysis of the
inhomogeneous mixing layer are detailed in the next section. At the saturation time
of the primary wave, we obtain the spectra of unstable modes for increasing density
contrasts. Among all the instabilities inventoried, we retrieve the two-dimensional
Kelvin–Helmholtz-type instability found by Reinaud et al. (2000). Seeding the base
flow at saturation time with this two-dimensional mode, we explore the nonlinear
development of the two-dimensional baroclinic instability in § 5. Our conclusions and
perspectives are given in § 6.

2. The variable-density Kelvin–Helmholtz wave
2.1. Governing equations

In the context of linear stability analysis, viscous terms prevent small-scale physically
irrelevant instabilities from being amplified, as stressed by Klaassen & Peltier (1985,
1991) or Mayer & Powell (1992). Hence we chose to establish the base two-dimensional
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flow maps based on a viscous model and to derive the stability analysis accordingly.
The objective of the paper is to find out the upper bound of density effects on
secondary instabilities of the VDKH billows. In order to obtain the most biased
response, we do not retain mass diffusion or equivalently assume an infinite Schmidt
number. This choice is supported by the work of Smyth (2003) showing that the
development of a two-dimensional secondary mode in the stratified mixing layer is
enhanced when both Prandtl and Reynolds numbers are increased. In absence of
mass diffusion, the density gradients remain steep, leading to the highest possible
intensity of the baroclinic torque. Besides, this assumption induces a divergence-free
flow (see Joseph 1990). As will be discussed in § 3, this avoids tedious algebra for the
derivation of the stability equations. Under the infinite-Schmidt-number assumption,
the governing equations read

∇ · u = 0, (2.1a)

ρDt u = −∇p +
1

Re
�u, (2.1b)

Dtρ = 0, (2.1c)

where Dt = ∂t + u · ∇ stands for the material derivative. We take u0 half the velocity
difference across the shear layer, 2l0 the shear-layer depth and ρ0 = (ρupper + ρlower )/2
the mean density as characteristic velocity, length and density scales. The resulting
characteristic time scale is t0 = l0/u0. The Reynolds number, defined by Re =
(u0l0ρ0)/µ, is set to 1500, well in the range of similar studies Staquet (1995); Smyth
(2003) devoted to secondary modes biased or triggered by modifications of the base
flow due to density variations. The dynamic viscosity µ is kept constant, which is a
fair approximation for the air–helium couple (see Fontane 2005). A relevant measure
of the inertia effects is the density contrast C ρ = �ρ/2ρ0 where �ρ = ρupper − ρlower

is the density difference across the shear layer. We address buoyancy-free flows where
the Froude number, defined by Fr = u0/

√
gl0C ρ with g the acceleration due to

gravity, is infinite.

2.2. Initial conditions

The x-axis is in the longitudinal direction and the y-axis in the crosswise direction.
The spanwise dimension along the z-axis will serve for the stability analysis. Co-
gradient and counter-gradient variable-density mixing layers correspond to shear
flows where the crosswise density and velocity gradients are, respectively, of the same
or of opposite signs. In the frame of the temporal approximation, these two situations
are equivalent since the Galilean transformation (x, y) → (−x, −y) turns one situation
into the other. We arbitrarily choose to place the denser fluid in the upper part of the
flow. The normalized profiles of velocity u = (u†, 0) and density ρ† that determine
the initial variable-density parallel shear flow are:

u†(y) = tanh
(
y − 1

2
H

)
, (2.2)

ρ†(y) = 1 + C ρ tanh
(
y − 1

2
H

)
. (2.3)

We carry out a classical inviscid temporal linear stability analysis on this parallel flow
with growing density contrast from 0 to 0.5. Hence we search for modal solutions for
the crosswise velocity perturbation v̂ = ṽ(y) exp(αx − αct) of the Rayleigh equation.
Generalized to the case with density variations across the layer, this equation is

[(u† − c)(ρ†(D2 − α2) + ρ†′D) − (ρ†u†′)′] ṽ = 0, (2.4)
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C ρ 0 0.1 0.2 0.3 0.4 0.5

α 0.444 0.447 0.453 0.464 0.479 0.498
αci 0.189 0.190 0.190 0.191 0.191 0.192
cr 0 0.059 0.117 0.174 0.229 0.281

Table 1. Characteristics of the most unstable mode of the temporally evolving
variable-density mixing layer. Wavenumber α, amplification rate αci and phase velocity cr .

where D and prime stand, respectively, for the crosswise differentiation of the
perturbation and the base flow fields, α is the streamwise wavenumber and c the
complex phase velocity. The density perturbation in the form ρ̂ = ρ̃(y) exp(αx − αct)
is deduced from the crosswise velocity by the linearized continuity equation,

[iα(u† − c)] ρ̃ = −ρ†′ṽ. (2.5)

Table 1 gives the characteristics of the most unstable Kelvin–Helmholtz mode. It
can be seen that the amplification rate is quite insensitive to the density contrast.
The wavenumber of the most amplified mode slightly increases with C ρ whereas the
phase velocity grows almost linearly in the direction of the upper high-density flow.
We stress that the structure of the most unstable mode also changes with the density
contrast as detailed in Joly (2002). We perturb the initially parallel flow with the most
unstable mode and we set the perturbation amplitude such that the enstrophy of the
perturbation is 4 % of the enstrophy of the shear layer over a period.

2.3. The VDKH billows

Equations (2.1a)–(2.1c) are advanced in time from the initial conditions by a two-
dimensional dealiased pseudospectral method described in Joly, Fontane & Chassaing
(2005) and Joly & Reinaud (2007). The two-dimensional velocity components (U, V )
and the density R are calculated on the domain [0, λx] × [0, H ], with a periodic
longitudinal boundary condition and a free-slip boundary condition in the crosswise
direction, i.e.

∂yU = 0, V = 0, ∂yR = 0, y = 0, H. (2.6)

Such free-slip boundary conditions are implemented in the pseudospectral frame
based on crosswise symmetries or antisymmetries on a 2H -wide period with the
respective use of cosine- and sine-transforms (see Staquet 1995). The width of
the domain is set to H = λx such that the slip-free walls do not strongly affect the
nonlinear development of the flow. The infinite-Schmidt-number condition demands
that the density field be resolved down to the smallest scales. For this purpose, we
estimate the order of magnitude of the relative density gradient by

1

R
|∇R| ∼ C ρ

ηρ

, (2.7)

where ηρ is a characteristic length scale of the density gradient. As in Joly et al.
(2005), a procedure of growing spectral radius is adopted which corresponds to a
mesh refinement in the physical space. The need for increased spatial resolution is
felt when the condition ∆ < min(ηρ)/3 is violated. Here ∆ denotes the smallest length
scale properly resolved by the dealiased pseudospectral approach, i.e. the nonlinear
terms are computed in the physical space on a grid with size ∆nl = 2∆/3. The
refinement constraint is illustrated in figure 1(a) for the most density contrasted
simulation and compared to the smoother case with mass diffusion and unit Schmidt
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C ρ 0 0.1 0.2 0.3 0.4 0.5

ωmax 0 0.078 0.461 0.838 1.216 1.614
ωmin −0.501 −0.705 −1.090 −1.448 −1.765 −2.041
σ̄KH −2.10−3 3.10−3 3.10−3 3.10−3 2.10−3 2.10−4

Nx × Ny 3402 20542 26882 26882 35842 41062

Table 2. Characteristics of the two-dimensional VDKH billows at saturation time t = 26.
Maximum and minimum vorticity on the period ωmax and ωmin, mean growth rate around

saturation time σ̄KH = (1/4)
∫ 28

24 σKHdt with σKH defined by (3.6) and grid size based on ∆.
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Figure 1. (a) Characteristic length scale of the density gradient ηρ (dashed lines) and the
smallest length scale properly resolved by the dealiased pseudospectral approach ∆ (solid
lines) for C ρ = 0.5. Thick lines correspond to an infinite Schmidt number, Sc = ∞, and thin
lines to Sc = 1. (b) Time spreading of the density variance spectra for Cρ = 0.5 and Sc = ∞.
Dashed spectra correspond to t = 28, 29 and 30 when the constraint in spatial resolution,
∆ < min(ηρ)/3, is released.

number. The spatial resolution of the exponentially decreasing density length scale
is paid for by a corresponding growth of the grid size, as detailed in table 2 for
t = 26.0. This is accompanied by a corresponding decrease of the time step owing to
the stability constraint of the time-advancement scheme. We afforded the associated
increase in computational cost up to a maximum grid size of 53762 in terms of ∆.
This limit is seen to be reached at t = 27.5 when C ρ = 0.5, hence the plateau at the
tail of the thick curve in figure 1(a). It is reached later for less density contrasted
mixing layers owing to the lower stretching rate of the density braid associated with
lower growth rates of the primary mode (see table 1). The self-adaptive refinement
procedure allows the proper representation of a density variance spectrum spreading
towards larger wavenumbers without small-scale dissipation (see figure 1b). Slight
small-scale variance accumulation is observed on the three last spectra corresponding
to t = 28, 29 and 30, i.e. after the resolution constraint is released. The criterion
∆ < min(ηρ)/3 is thus demonstrated to ensure the resolution of a pure transport
equation for the density in our numerical frame at least before t = 27.5. Close
inspection of the density field up to t = 30, where still min(ηρ)/� = 1.45, does not
exhibit any oscillation or overshoots and the base flow fields can be confidently used
for the purpose of stability analysis.
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Figure 2. Vorticity contours at t = 26 of the temporally evolving mixing layer with increasing
density contrasts (a) C ρ = 0, (b) C ρ = 0.1, (c) C ρ = 0.2, (d) C ρ = 0.3, (e) C ρ = 0.4 and (f)
C ρ = 0.5. The vorticity increment between contours is 1/6t0 in (a) and (b), 1/4t0 in (c) and
(d), and 1/2t0 in (e) and (f). Positive contours are drawn with dashed lines. The grey-shaded
region corresponds to the domain where the density is higher than ρ0. Tick marks along x and
y axes are separated by the initial vorticity thickness δ0

ω = 2l0.

Figure 2 displays the vorticity field at t = 26 near the saturation time of the primary
mode. Inertia effects yield a growing departure from the symmetric Kelvin–Helmholtz
billow of the homogeneous mixing layer. The baroclinic source–sink system advocated
by Soteriou & Ghoniem (1995) and Reinaud et al. (2000) triggers the asymmetry of
the vorticity field together with a concentration of the circulation on thinning vorticity
sheets of opposite signs. The vorticity is redistributed in favour of the half of the
braid lying on the light side. The other half is vorticity depleted in a first stage
and then exhibits vorticity of opposite sign. For the sake of clarity, the contour
increment is increased with growing density contrast. Though similar in structure, the
level of negative vorticity on the favoured side of the braid dramatically increases
with growing density contrast as reported in table 2. The spatial organization of the
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flow in sharp vorticity ridges, holding high shear rates, discard any three-dimensional
stability analysis based on the Stuart vortex model. Following the conclusion of
KP91, the shear instability being the fundamental mechanism for the onset of three-
dimensional motions, we expect three-dimensional instabilities to move towards the
regions of shear production. Our position then contrasts with the analysis by O’Reilly
& Pullin (2003). These authors address the compressibility effects on the stability of
the compressible Stuart vortices taken as a representative model of the high-speed
homogeneous mixing layer. We deal with incompressible mixing of inhomogeneous
flows where the structural difference with the homogeneous base field comes from
baroclinic vorticity sources. No stationary analytical model may approach the actual
two-dimensional nonlinear wave in this case. Thus, we resort to a quasi-steady
approach to probe the sensitivity of the VDKH billows against three-dimensional
modes. This is the objective of the next section.

3. Formulation of the problem
3.1. The method for the stability analysis

We linearize (2.1a)–(2.1c) by expanding the velocity, density and pressure fields as

u(x, y, z, t) = U(x, y) + û(x, y, z, t), (3.1a)

ρ(x, y, z, t) = R(x, y) + ρ̂(x, y, z, t), (3.1b)

p(x, y, z, t) = P (x, y) + p̂(x, y, z, t), (3.1c)

where U = (U, V ), P and R represent the two-dimensional base-flow fields provided
by the VDKH billow calculations of § 2.3, and û = (û, v̂, ŵ), p̂ and ρ̂ the three-
dimensional perturbations. We obtain:

Dt ρ̂ + û · ∇R = 0 = ∇û, (3.2)

RDt û + Rû · ∇U + ρ̂U · ∇U = −∇p̂ +
1

Re
�û. (3.3)

The boundary conditions at y = 0 and y = H are

v̂ = 0, ∂yû = ∂yŵ = 0, ρ̂ = 0, ∂yp̂ =
1

Re
∂2

y v̂. (3.4)

A Fourier expansion is assumed in the z-direction as no coefficient of the linear
problem involves a z-dependence. Furthermore, the base-flow being x-periodic, we
apply the Floquet theory as in Klaassen & Peltier (1985, 1989, 1991), Leblanc &
Cambon (1998) and O’Reilly & Pullin (2003). Hence perturbations have a modal
representation of the form:

[û, v̂, ŵ, p̂, ρ̂] (x, y, z, t) = [ũ, ṽ, w̃, p̃, ρ̃] (x, y)ei(µx+kz)+σ t , (3.5)

where k is the real spanwise wavenumber, µ is the real Floquet exponent and
σ = σr + iω is the complex frequency. We denote by σr the temporal growth rate and
ω the temporal frequency of the perturbation. Following Klaassen & Peltier (1985,
1989, 1991), the exponential time-dependence is justified with a quasi-steady approach.
We assume that the flow evolves on two separate time scales, the slower being
associated with the VDKH billows and the faster being associated with secondary
three-dimensional instabilities. Thus, it must be subjected to an a posteriori validation
based on the comparison between temporal growth rates. Among the amplified modes,
we retain those with a temporal growth rate σr large compared to the growth rate of
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the VDKH wave, i.e.

σr � σKH =
1

2K

dK

dt
, (3.6)

where K is the kinetic energy of the nonlinear VDKH billows defined in KP91.
Substituting the perturbations of the form (3.5) into the linearized equations (3.2) and
(3.3) yields:

σRũ + RU∂̃xũ + RV ∂yũ + RUxũ + RUyṽ + (UUx + V Uy)ρ̃ = −∂̃xp̃ +
1

Re
�̃ũ, (3.7a)

σRṽ + RU∂̃xṽ + RV ∂yṽ + RVxũ + RVyṽ + (UVx + V Vy)ρ̃ = −∂yp̃ +
1

Re
�̃ṽ, (3.7b)

σRw̃ + RU∂̃xw̃ + RV ∂yw̃ = −ikp̃ +
1

Re
�̃w̃, (3.7c)

σ ρ̃ + U∂̃xρ̃ + V ∂yρ̃ + Rxũ + Ryṽ = 0, (3.7d)

∂̃x ũ + ∂yṽ + ikw̃ = 0, (3.7e)

where ∂̃x ≡ (iµ + ∂x) and the differential operator

∆̃ ≡ ∂̃2
x + ∂yy − k2. (3.8)

In order to eliminate the pressure terms, the Poisson equation is derived by taking
the divergence of the momentum equation (3.2):

∆̃p̃ = −2R[Ux∂̃xũ + Vx∂yũ + Uy∂̃xṽ + Vy∂yṽ]

− Rx[σ ũ + U∂̃xũ + V ∂yũ + Uxũ + Uyṽ]

− Ry[σ ṽ + U∂̃xṽ + V ∂yṽ + Vxũ + Vyṽ]

− (UUx + V Uy)∂̃x ρ̃ − (UVx + V Vy)∂yρ̃

−
[
U 2

x + 2UyVx + V 2
y

]
ρ̃ . (3.9)

The symmetries outlined by Klaassen & Peltier (1985, 1989, 1991) in the stratified
case still hold for the system (3.7a)–(3.7e) and the search for unstable modes is
restricted to 0 � µ � 1/2 and k � 0. The eigenvalues σ are also expected to be real
or to appear in complex-conjugate pairs. Because of the bounded nature of the base
fields in the crosswise direction, we implement a Fourier–Galerkin method similar
to that developed by KP91, to carry out the stability analysis of the VDKH waves.
The perturbations are expanded on the following Galerkin basis according to the
boundary conditions (3.4):

[ũ, w̃, p̃] (x, y) =

∞∑
m=−∞

∞∑
n=0

[unm, wnm, pnm] eimxcos

(
nπy

H

)
, (3.10)

[ṽ, ρ̃] (x, y) =

∞∑
m=−∞

∞∑
n=1

[vnm, ρnm] eimxsin

(
nπy

H

)
. (3.11)

We subtitute (3.10) and (3.11) into the system (3.7a)–(3.7e) and (3.9). The inner product
of each equation with the complex conjugate of the appropriate basis function yields
the following eigensystem :

Bqppq = σJ (1)
npmqunm + J (2)

npmqunm + J (3)
npmqvnm + J (4)

npmqρnm, (3.12a)

Dpppq = σJ (5)
npmqvnm + J (6)

npmqunm + J (7)
npmqvnm + J (8)

npmqρnm, (3.12b)
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ikppq = σJ (1)
npmqwnm + J (9)

npmqwnm, (3.12c)

σρpq = J (10)
npmqρnm + J (11)

npmqunm + J (12)
npmqvnm, (3.12d)

0 = iBqupq + Dpvpq + ikwpq, (3.12e)

Apqppq =
(
σJ (13)

npmq + J (14)
npmq

)
unm +

(
σJ (15)

npmq + J (16)
npmq

)
vnm + J (17)

npmqρnm, (3.12f)

where

Bm = µ + m, Dn =
(nπ

H

)
, Anm = B2

m + D2
n + k2, (3.13)

and summation is implied over repeated indices. The interaction matrices J (i)
npmq which

are not explicated here for clarity consist of inner products between basis functions
and base-flow fields, see Fontane (2005) for their detailed expressions. Following the
discussion of Klaassen & Peltier (1985), the eigensystem can be reduced to a closed
set of three equations by eliminating the pressure in (3.12a)–(3.12c) with (3.12f):

σI (1)
npmqunm =

(
I (2)
npmq +

Anm

Re

)
unm + I (3)

npmqvnm + I (4)
npmqρnm, (3.14a)

σI (5)
npmqvnm =

(
I (6)
npmq +

Anm

Re

)
unm + I (7)

npmqvnm + I (8)
npmqρnm, (3.14b)

σρpq = I (9)
npmqρnm + I (10)

npmqunm + I (11)
npmqvnm. (3.14c)

Truncating the expansions (3.10) and (3.11) at some finite level N , the system (3.14b)–
(3.14c) is finally cast into a matrix-eigenvalue problem of the form Ax = σBx

with x = [unm, vnm, ρnm]. The truncation scheme adopted is 2|m + µ| + n � N . The
eigenvalue problem is solved using LAPACK routines from the Intel MKL library.
The characteristics of the unstable modes depend mainly on the truncation level N ,
and to a lesser extent on the vertical domain length H . The size M of the generalized
eigenvalue problem is O(N2). Its solution is based on the so-called QZ -algorithm
whose cost grows as M2. This is also the cost of the summations resulting in the
interaction matrices Inpmq . For all calculations presented here, N has been fixed
to 55. In the homogeneous case, we checked that this is large enough to reach a
1 % convergence of the amplification rate and phase velocity at least for the most-
amplified branches presented hereinafter. KP91 used truncation levels of N = 35
(resp. N = 27) for the stability analysis of the homogeneous (resp. stratified) mixing
layer. The sensitivity of the results to the vertical extent of the domain H has been
tested over the range 9–13 (in l0 units). With the truncation level adopted here, no
significant variation has been observed in the results.

3.2. Validation of the numerical method

A thorough validation of the numerical method has been performed in Fontane (2005).
We retrieved exactly the two-dimensional stability results of Michalke (1964) for the
homogeneous mixing layer and Joly (2002) for its variable-density counterpart. The
three-dimensional stability analysis has also been performed for both the Stuart
vortices and the KH nonlinear wave. The results are in close agreement with
Pierrehumbert & Widnall (1982) and KP91. In figure 3, we present the unstable
branches of the KH billows for Re = 300 at the time the primary wave climaxes. All
the modes identified by KP91 are recovered with an excellent agreement for both the
growth rate and temporal frequency (see their figure 13). The higher truncation level
used for the present study allows us to find two additional modes not reported in
their paper. The first one (�) corresponds to an oscillatory hyperbolic instability and
the second one (�) is a stationary elliptic mode.
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Figure 3. (a) Growth rate and (b) temporal frequency vs. spanwise wavenumber k for the
maximum-amplitude state (t = 24) of the nonlinear KH wave with C ρ = 0 and Re = 300.
The symbols on each branch denote the fastest growing mode.

4. Secondary instabilities of the variable-density mixing layer
Contrary to shooting methods, stability analyses based on direct methods yield

all the eigenmodes available in the frame of a discrete approach. For N = 55, the
number of eigenvalues in the spectrum rises from M = 3081 in the homogeneous case
to M = 4594 for the variable-density case. Among them, the number of amplified
modes is consequent in response to the high Reynolds number and the infinite Schmidt
number. Compared to the KP91 case with Re = 300, the basic state established with
Re = 1500 is sensitive to numerous high-wavenumber instabilities as the flow is
structured on smaller scales otherwise damped by viscosity. The amplified part of
the spectrum is dense and the identification of the unstable branches turns out to
be tedious. It relies on the continuity of the growth rate and phase speed with k

along the branch. The spatial organization of the eigenmode allows us to discriminate
between modes with close eigenvalues and to solve branch crossings in the (k, σ )-
plane. In this section, the stability analysis is carried out only at the time the primary
Kelvin–Helmholtz wave climaxes, i.e. at t = 26. The mean growth rate of the primary
wave around the saturation time collapses as shown in table 2. Hence all amplified
modes could be retained as they all fulfil the quasi-steady condition (3.6). For the
sake of clarity and since only the most unstable modes are likely to emerge in real
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Figure 4. Growth rate vs. spanwise wavenumber k for the maximum-amplitude state (t = 26)
of the nonlinear VDKH wave with Re = 1500 and various values of the density contrast: (a)
C ρ = 0, (b) C ρ = 0.1, (c) C ρ = 0.2, (d) C ρ = 0.3, (e) C ρ = 0.4 and (f) C ρ = 0.5. The symbols
on each branch denote the fastest growing mode.

flows, we present the most-amplified modes of each family which reduce to a set of
ten principal instabilities.

Figure 4 describes the growth rate versus the spanwise wavenumber for an
increasing density contrast. In the homogeneous case, we have a larger Reynolds
number than KP91 which results in the spreading of the branches towards higher
spanwise wavenumbers (compare figures 4a and 3a). The increase in Reynolds number
favours the growth of hyperbolic modes at high spanwise wavenumbers while the
growth rate of elliptic modes remains unchanged. By definition, hyperbolic modes
take place in the strained braid region around the saddle point of the streamfunction.
Hence they benefit from the development of small length scales and give rise to
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broadband instabilities. Despite this well-known Reynolds-number effect, we retrieve
an unstable spectrum classically divided into core-centred and braid-centred modes.
All the branches observed in the homogeneous case and corresponding to these two
families will be referred to as homogeneous modes hereinafter.

The variable density Kelvin–Helmholtz billow exhibits biased homogeneous modes
and new modes emerging from the specific features of the base flow. We will see
further that the latter are two-dimensional shear instabilities of the vorticity braid,
but let us analyse first the modifications of the homogeneous or three-dimensional
modes.

The growth rate, temporal frequency and peak wavenumber of core-centred modes
remain almost unchanged. Their structure is altered as the symmetry breaking of
the base flow triggers a growing asymmetry of the eigenmodes. This can be seen
in figures 5(c, e) displaying contours of the kinetic energy per mass unit, k̃ = |ũ|2 +

|ṽ|2 + |w̃|2. This is also true for the hyperbolic mode which concentrates on the thin
vorticity ridge at the left of the saddle point (see figures 5e, f ). As described in § 2,
the baroclinic vorticity production enhances vorticity and shear on the braid lying on
the light side of the VDKH. As such this layer is the best candidate to hold the shear
conversion mechanism advocated by KP91 to promote the onset of three-dimensional
motions. At C ρ = 0.4, not only is the energy distribution of the stationary hyperbolic
mode altered, but also its growth rate and peak spanwise wavenumber. This instability
has a larger growth rate, σr = 0.215, and develops on smaller spanwise periods, k � 5,
than its symmetric homogeneous counterpart for which σr = 0.16 at k = 3.5. For
the larger density contrast examined here, C ρ = 0.5, the core-centred elliptic mode
does not emerge from the cloud of weakly amplified modes and is not referenced in
figure 4(f ). In the meantime, the hyperbolic mode is overintensified with a growth
rate raised to σr = 0.246 for k = 5. While the competition between these two kinds
of instabilities is balanced in the homogeneous shear layer (Metcalfe et al. 1987;
Klaassen & Peltier 1991), the present results assert that the hyperbolic modes will
prevail over elliptic modes in the variable-density case.

In response to the transformation of the primary roll-up from the smooth
homogeneous billow to the layered variable-density structure, a new family of modes
emerges in the spectrum. Additional branches appear in figure 4(b–f ) with a maximum
growth rate for k = 0 denoting a two-dimensional mode. From figure 6, the energy
of these modes is found to concentrate in the sharp vorticity ridges of the base flow
where the baroclinic vorticity production is most intense. The central isopycnic line
of the base flow where ρ = ρ0 is also plotted in order to locate the mode within the
VDKH billow. For a small density contrast, the mode is located on the braid end
lying on the light side, see figure 6(a). For a higher density contrast, the mode is
active in two distinct regions, as seen from figure 6(b). It still prevails on the lower
braid, but also develops inside the light fluid tongue engulfed into the vortex core.
Both the vorticity and density fields of these modes, displayed in figure 6(c–f ), consist
of an alternation on a short wavelength of sinks and sources along the vorticity sheet.
Their wavelength λ2D is estimated as λ2D � λx/16 for C ρ = 0.1 and λ2D � λx/11 for
C ρ = 0.5. This perturbation pattern is characteristic of a Kelvin–Helmholtz shear
instability. This mode is identical to the secondary baroclinic instability found by
Reinaud et al. (2000) in their two-dimensional inviscid simulations.

The enhanced vorticity layer can be modelled as a one-dimensional vorticity
sheet submitted to a strain field induced by the rolling of the primary wave. The
Squire’s theorem applied to this model ensures that the most amplified mode is two-
dimensional. The present stability analysis is consistent with this simplified model as
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Figure 5. Structure of the elliptic mode (�) and the hyperbolic mode (◦): iso-levels of energy
with (a) C ρ = 0, σr = 0.083, (b) C ρ = 0, σr = 0.161, (c) C ρ = 0.2, σr = 0.084, (d) C ρ = 0.2,
σr = 0.165, (e) C ρ = 0.4, σr = 0.102 and (f) C ρ = 0.4, σr = 0.212. Energy is normalized to be

unitary and the contour increment is u2
0/4.

the maximum growth rate is found for k = 0. The stability of the layer is known to
depend on the competition between strain and vorticity. Whereas the vorticity layer
alone is unstable, the strain field has a stabilizing effect. Its associated solenoidal
velocity field damps oscillations in the direction normal to the sheet and stretches the
perturbation wavelengths in the tangential direction, eventually beyond the unstable
range. According to this analysis due to Dritschel et al. (1991), a strain rate to vorticity
ratio γ /Ω above 0.25 prevents the growth of any perturbation. Below this threshold,
the linear approach states that the amplification factor increases with decreasing levels
of γ /Ω . However, the strain rate to vorticity ratio must be as low as 0.065 to yield
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Figure 6. Structure of the most amplified two-dimensional baroclinic Kelvin–Helmholtz mode
(×) at C ρ = 0.1 (a, c, e) and C ρ = 0.5 (b, d, f ). k = 0. The contours represent iso-levels of
energy in (a) and (b), iso-levels of spanwise vorticity in (c) and (d), iso-levels of density in
(e) and (f). The mode characteristics are σr = 0.0799, ω = 9.45 for C ρ = 0.1 and σr = 0.237,
ω = 4.6 for C ρ = 0.5. Perturbations are normalized to have a unitary energy. The contour
increments are, respectively, u2

0/4, 1/2t0 and �ρ/2 for the energy, vorticity and density fields.
The dashed levels correspond to negative values and the dashed line denotes the central
isopycnic line of the base flow. Points A and B are defined in figure 7.

an amplification factor of 3. This particular level of γ /Ω is considered therefore as
a convenient threshold for the onset of the shear instability. A similar analysis was
transposed by Staquet (1995) and Smyth (2003) to the secondary two-dimensional
instability occurring at the saddle point of the stratified mixing layer.
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Figure 7. Ratio of the strain rate γ to the vorticity Ω along the central isopycnic line. s is
the curvilinear coordinate originating at the saddle-point, approximated here as the point of
maximum γ . . . . , C ρ = 0; − − −, C ρ = 0.1; —, C ρ = 0.5. The dashed-dotted line denotes a
threshold value of 0.065 and A, B represent the first positions with zero strain rate starting
from the saddle point.

We measure the strain rate along the central isopycnic line by γ = η · ∇u · η where
η is a unit vector normal to the density gradient. From figure 7 it is seen that,
in the variable-density case, any arbitrary threshold of γ /|Ω | is reached closer to
the saddle point where the stretching rate is maximum. This argument was first
invoked by Reinaud et al. (2000) in their analysis of the basic mechanism leading
to the baroclinic secondary instability. The portion of the negative vorticity braid
where γ /|Ω | � 0.065 presents a wider extent as the density contrast is increased.
Consistently, the perturbation spreads over a longer part of the braid, as can be seen
in figure 6. Between points A and B where the strain collapses, the vorticity layer is
submitted to a compression strain field favourable to the growth of the instability. It
is not surprising then that the energy of the perturbation peaks between A and B . In
the homogeneous case, the compression zone is part of the core and is beyond the
scope of the vorticity-sheet model.

We thus retrieved the secondary baroclinic instability of Reinaud et al. (2000) from
a direct linear stability analysis of the base flow rather than from inviscid numerical
simulations. These new results assert the relevancy of the mechanism to the transition
of high-Reynolds-number variable-density mixing layers without mass diffusion. The
instability being of Kelvin–Helmholtz type, its onset is not precluded by momentum
diffusion, i.e. finite Reynolds number. In contrast Reinaud et al. (2000) we are able
to discuss the competition with three-dimensional modes and with the pairing mode.
To answer the latter point, we performed a stability analysis varying the Floquet
exponent µ from 0 to unity, as was done by Pierrehumbert & Widnall (1982) and
Klaassen & Peltier (1989) for the Stuart vortices and the stratified mixing layer. In
particular, we focused on the two-dimensional subharmonic modes, µ = 0.5, for the
most density-contrasted case, C ρ = 0.5. From the contours of their vorticity fields
(not displayed here), the most amplified subharmonic modes are identified as shear
instabilities of the vorticity braid in phase opposition between two consecutive VDKH
billows. The most amplified subharmonic mode has a growth rate of σr = 0.227 to be
compared to σr = 0.237 for the shear instability on a single period, i.e. with µ = 0.
Hence we switch from the concurrent growth between three-dimensional modes and
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Figure 8. (a) Temporal evolution of the growth rates of both the VDKH billow (solid line)
and the secondary shear instability (dashed line) for C ρ = 0.5. The vertical line denotes the
critical time tc = 18. Energy contours of the two-dimensional mode for (b) t = 14, (c) t = 18
and (d) t = 22 with u2
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the two-dimensional pairing mode in the homogeneous mixing layer, to a variable-
density mixing layer where the enhanced vorticity braid fed by baroclinic vorticity
redistribution is the location where a secondary two-dimensional shear instability may
compete with the growth of shear conversion to three-dimensional motions.

5. Nonlinear development of the secondary two-dimensional mode
In the previous section, the results of the stability analysis are examined at t = 26.

We now focus on the two-dimensional mode and check its persistence along the
development of the primary VDKH-wave. For C ρ = 0.5, figure 8(a) compares the
temporal evolution of its growth rate with that of the primary instability. The mode
is already present in the spectrum around t = 10, though weakly unstable. It is not
likely to develop at this stage since the low value of σr violates the quasi-steady
assumption. Following KP91, we conventionally define the critical time tc at which
the growth rate of the two-dimensional mode first exceeds twice the growth rate of
the primary wave, i.e. σr � 2σKH . From the critical time, tc = 18, the relevancy of the
two-dimensional mode is verified.

From the energy contours of figure 8(b–d ), we identify the two-dimensional mode
from its main feature – the energy peaks in the compression zone below the central
isopycnic line. The vorticity and density perturbations are organized into alternate
sources and sinks, similar to those displayed at t = 26 in figure 6(d , f ). The second
spot of energy in the right-hand part of the core, displayed in figure 6(b) at t = 26,
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emerges around t = 22 as can be seen in figure 8(d ). For early times, t � 20, the
primary wave has not overturned yet and the core of the VDKH billow has not
developed into a coiled vorticity sheet.

We now illustrate the nonlinear development of the least-stable two-dimensional
mode based on the numerical continuation of a perturbed VDKH wave. In agreement
with the previous discussion, we seed the most density-contrasted variable-density
KH-wave at the critical time tc = 18 with the perturbation issuing from the stability
analysis performed at the same time. The perturbation is given an amplitude such
that its enstrophy is 0.6 % of the enstrophy of the base flow over the period. The
same scaling factor is applied to both the velocity and density perturbation fields.
The adaptive spatial resolution based on the condition min(ηρ) > 3∆ leads to a
final 80642 grid at t = 28. This highly demanding resolution is due to the increased
stretching of the material lines by the secondary mode, as will be illustrated later.
A pseudospectral code based on a uniform grid is obviously not an optimal choice
for this flow where density and velocity gradients concentrate on a small portion of
the calculation domain. At least the adaptive time step and spectral radius avoid
propagating the spatio-temporal resolution of the final time steps back to the earlier
ones.

From figure 9, we see that the perturbation initiates secondary roll-ups in the
favoured part of the braid. The alternate vorticity sources and sinks are advected
towards the centre of the domain as the primary roll-up proceeds. Since the forcing is
performed at t = 18 only, no perturbations are applied in the wake of the advected
secondary cores. There, the stretched vorticity layer remains stable from the saddle
point to the last forming structure. Contrary to the inviscid Lagrangian code used by
Reinaud et al. (2000) which spontaneously revealed and sustained the two-dimensional
instability, the present fully resolved (low-noise) pseudospectral simulations at finite
Reynolds number are too smooth to excite it continuously. The breakup of the
vorticity braid is completed by t = 24 and newly formed secondary structures present
the same organization as the VDKH billow. The acceleration pattern around the
saddle point of the primary wave repeats itself at this smaller scale. The baroclinic
torque produces negative vorticity on the light side and positive vorticity on the
heavy one, leading to the concentration of vorticity on comma-shaped layers. As was
pointed out by Reinaud et al. (2000), this is typical of a two-dimensional cascade
towards smaller scales presenting the features of a fractal process with scale invariance
of the flow structure. If not limited by momentum diffusion and calculation cost, we
eventually witness the breakup of the secondary vorticity braids into third-generation
small-scale billows. This is illustrated in Fontane et al. (2008) where the perturbation
is injected earlier at t = 13. In real flows, we expect this third generation to be
prevented by the prior rise of three-dimensionality.

Corresponding density contours illustrating the growing complexity of the scalar
field are shown in figure 10. Light fluid (white) and heavy fluid (grey) are seen to
intermingle on small scales in response to the secondary roll-ups. A large impact
on the mixing rate is expected. We thus measure the increase of the interfacial area
between the two fluids from the stretching of the central isopycnic line. The time
evolution of its length, denoted �cil , is plotted on a logarithmic scale in figure 11
where the perturbed and unperturbed flows are compared. From t = 12, the primary
wave alone triggers an exponential growth �cil ∼ exp(σ�t) with σ� = 0.085, nearly
half the value of the primary mode growth rate (see table 1). The onset of the
two-dimensional secondary mode from t = 18 raises the �cil-growth rate up to
σ� = 0.24, close to σr = 0.237 as measured by the stability analysis. This latter
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Figure 9. Vorticity contours of the temporally evolving mixing layer C ρ = 0.5 seeded at
t = 18 with the two-dimensional perturbation of the favoured vorticity braid. The vorticity
increment between contours is 1/4t0 at t = 18, 20, 1/2t0 at t = 22, 24 and 1/2t0 at t = 26, 28.
Positive contours are drawn with dashed lines. The grey-shaded region corresponds to the
domain where the density is higher than ρ0. Tick marks along x and y axes are separated by
the initial vorticity thickness δ0

ω = 2l0.

agreement between σ� and σr should be considered as pure coincidence – note their
difference in the case with no perturbation of the secondary mode. The central
isopycnic line experiences a time-evolving strain field of alternate stretchings and
compressions between consecutive hyperbolic regions. We measure here only the
result of this complex history. Commenting on the simpler situation described by
Corcos & Sherman (1984), Ottino (1989) stressed that, within an homogeneous KH-
billow, the details of the stretching history of fluid elements are highly complicated. In
the VDKH-billow submitted to the secondary baroclinic instability, both the primary
and secondary roll-ups contribute to the folding of the material lines. Besides, the
small-scale wrapping of the material interface is only active on the perturbed fraction
of the central line. Indeed, no quantitative relationship emerges between the growth
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Figure 10. Density contours of the temporally evolving mixing layer C ρ = 0.5 seeded at
t = 18 with the two-dimensional perturbation of the favoured vorticity braid. The density
increment between contours is ∆ρ/10. The grey-shaded region and tick marks are defined as
in figure 9.

of the kinetic energy perturbations of the and their by-product in terms of stretching
integrated along one particular material line.

From the stability analysis, we found numerous two-dimensional secondary modes
less amplified than the one selected here. Some of them focused elsewhere on the
vorticity braid, for example on the heavy fluid side supplied with positive vorticity.
A superposition of several modes would have triggered secondary roll-ups on a
larger portion of the central isopycnic line. Though unlikely to happen naturally,
such a complex modal perturbation would yield even larger exponential growth
of the interfacial length. Finally, the two-dimensional secondary shear-instability of
stretched layers of vorticity and density-gradient, comes out as a good candidate for
promoting mixing, together with more standard transition mechanisms appealing to
three-dimensionalization.
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Figure 11. Temporal evolution of the length �cil of the central isopycnic line normalized
by λx . The dashed and solid lines correspond, respectively, to the case with and without
the baroclinic secondary instability. The dashed-dotted lines measure respective exponential
growth rates σ� = 0.24 and σ� = 0.085.

6. Conclusions
In this paper, we address the three-dimensional stability of the mixing layer

developing between two fluids of different density. Numerical simulations are carried
out to obtain the temporal evolution of the two-dimensional variable-density Kelvin–
Helmholtz billows. The Reynolds number is 1500 while both the Schmidt and Froude
numbers are infinite. The density contrast is varied between C ρ = 0 and C ρ = 0.5,
increasing the intensity of the baroclinic torque and the asymmetric concentration
of vorticity onto thin and folded layers. These flow maps are then probed against
three-dimensional modes at the saturation time of the primary mode.

The eigenmodes issued from the stability analysis fall into two main classes. In the
first class, we find the elliptic and hyperbolic modes already identified by KP91 in
the homogeneous mixing layer. Because of baroclinic redistribution, the braid region
evolves in sharp vorticity ridges and holds high shear and strain rates favourable to the
development of secondary instabilities. The growth rate of hyperbolic modes increases
with the density contrast and they develop preferentially on the vorticity-enhanced
part of the braid. Hence, elliptic modes, whose growth rate is quite insensitive to
changes in the base flow, gradually cease from being relevant.

Specific transverse modes form a second class with a maximum growth rate at
zero spanwise wavenumber. They refer to a two-dimensional shear instability of
the vorticity-enhanced braid, first detected and analysed by Reinaud et al. (2000)
from inviscid Lagrangian simulations. Beyond the cross-validation of their results, we
prove that this secondary instability is also amplified for finite Reynolds number. The
perturbation consists in a succession of alternate vorticity sources and sinks associated
with a similar density pattern. A further analysis of the strain along the central
isopycnic line yields that the perturbation energy peaks in the compression zone first
met from the saddle point. The present three-dimensional stability analysis proves that
the two-dimensional secondary instability competes fairly with the three-dimensional
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braid-centred modes at least for C ρ � 0.2 at saturation time. The vorticity-enhanced
braid is thus the unique and preferred location for the development of secondary
instabilities in contrast with the homogeneous shear layer where core-centred modes
play a significant role.

We perform a fully resolved numerical continuation of the nonlinear development
of the two-dimensional mode. The perturbations are seen to trigger a KH-instability
of the curved part of the vorticity-enhanced braid which breaks into secondary rollers.
As their strength increases, the small-scale roll-ups turn into comma-shaped vorticity
layers owing to a baroclinic torque pattern similar to the one biasing the primary
KH-billow. We measure a sharp increase in the mixing rate in response to the onset
of the two-dimensional mode. In this particular case, the exponential growth rate of
the interfacial length raises by a factor of three. More generally, this instability turns
out probably to participate in the mixing transition together with three-dimensional
modes.

The selection of the secondary instabilities has been discussed for the variable-
density mixing layer with no mass diffusion. This approach is justified in itself in order
to obtain the most biased response in contrast to the homogeneous flow. However,
it precludes carrying out three-dimensional simulations down to the length scale of
the non-miscible scalar field. For an infinite Schmidt number, the density gradient
and the corresponding vorticity source peak on shear layers thinning unboundedly.
In contrast with this situation, monophase binary mixing gaseous flows of practical
interest develop under finite-Schmidt-number conditions. The effect of non-zero mass
diffusion on the competition between secondary modes must also be addressed.
With the diffusive terms in the continuity equation for both the generation of the
base flow maps and the stability analysis, we expect to find a simpler spectrum on
a smoother base flow. This context will not only allow the discussion of the finite-
Schmidt-number effect, but also alleviate the computational cost of three-dimensional
simulations including the hyperbolic mode.

In § 5, we superimposed an eigenmode perturbation of the background flow taken
at tc = 18. Though close to saturation, the primary roll-up still induces an unsteady
advection field that is beyond the scope of our local instability analysis. The least
stable eigenmode does not anticipate the flow history from tc = 18 down to a time
horizon where the energy of the secondary mode and the induced mixing would be
maximized. This requires a different approach of the stability problem better suited
for unsteady base flows. We consider the direct-adjoint method, see Schmid (2007),
adapted to find the perturbation maximizing the response for a given injection time.

We acknowledge fruitful discussions with Dr Jean N. Reinaud and express our
thanks for his helpful comments on the draft of this paper.
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